Treatment of Ground Water with Zero Valent Iron (ZVI)

Ralph Ludwig, Ph.D.

U.S. EPA Office of Research & Development (Robert S. Kerr Environmental Research Center, Ada, OK)

Presentation Summary

- What is ZVI?
- How does ZVI work?
- What contaminants are treatable with ZVI?
- How do we design for use of ZVI?
- What ground water chemistry changes occur in presence of ZVI?
- Application status of ZVI systems
- ZVI emplacement types and advances

Zero Valent Iron (e.g. iron filings, powder)

Effective in treating ground water impacted by

- chlorinated ethenes
- chlorinated ethanes
- chlorinated methanes (some)
- dissolved metals

ZVI Powder

Reaction Mechanism

- Corrosion of iron drives reaction
- Iron provides electron source for reduction (dechlorination) of organics
- More highly chlorinated compounds degrade faster (TCE degrades faster than vinyl chloride)

Chemical Process - TCE

Observed Percent Conversions - Chlorinated Ethenes

Contaminants Treatable by ZVI

Methanes	 tetrachloromethane 	Propanes	• 1,2,3-trichloropropane		
	 trichloromethane 		1,2-dichloropropane		
Ethanes	 hexachloroethane 	Other	 hexachlorobutadiene 		
	1,1,1-trichloroethane		1,2-dibromoethane (EDB)		
	1,1,2-trichloroethane		• freon 113		
	1,1-dichloroethane		• freon 11		
	1,1,2,2-tetrachloroethane		lindane		
Ethenes	 tetrachloroethene 		 N-nitrosodimethylamine 		
	 trichloroethene 		 Nitrobenzene 		
	• cis-1,2-dichloroethene				
	trans-1,2-dichloroethene				
	1,1-dichloroethene				
	• vinyl chloride				

Contaminant Half-Life Concept

- The half life of a contaminant is the time it takes for the concentration of the contaminant to reach one half of its original concentration.
- For example, if the original concentration of TCE is 100 mg/L (ppm) and the concentration after two hours in the presence of ZVI is 50 mg/L, then the half life of TCE is 2 hours.

Column Treatability Study Setup

Column Treatability Tests

Yield site-specific half-life data for contaminants of concern

Typical Half-Life Compound (hours)	Typical Half-Life Compound (hours)
PCE 0.5-2	CT 0.5-1
TCE 0.5-2	TCM 1-3
cis 1,2-DCE 2-6	1,1,1-TCA 0.5-2
VC 2-6	

Dunn Field Column Test Half-Lives (hrs)

	<u>MW54</u>	<u>MW77</u>
CT	0.3	
TCM	1.1	
1,1,2,2-TeCA	1.5	1.3
1,1,2-TCA		2.5
PCE		2.9
TCE	2.0	2.7
Cis 1,2-DCE	2.4	4.1
VC		2.4

Well Locations MW54 and MW77

Half-life Discussion

- Assume column tests show TCE has a half life of 2 hours for treatment with ZVI
- If GW velocity is 1 foot per day
 - 12 inches / 24 hours (= 1 inch each 2 hours)
 - 2 hours of residence time per inch
 - (residence time is time spent in contact with ZVI)
 - 1 half life for each inch of iron thickness
 - 12 half lives requires 12 inches of iron

Half Lives (continued)

<u>If</u>

1 inch of travel time = 2 hours & 1 half life = 2 hours

<u>Then</u>

1 inch of travel through ZVI = 1 half life of treatment

Half-Lives (continued)

- TCE (ppb)
 - **10,000**
 - **5,000**
 - **2,500**
 - **625**
 - **160**
 - **40**
 - **10**
 - **2.5**

- Half lives (residence time, ZVI thickness)
 - **0**
 - 1 (2 hrs; 1 in thick)
 - 2 (4 hrs; 2 in thick)
 - 4 (8 hrs; 4 in thick)
 - 6 (12 hrs; 6 in thick)
 - 8 (16 hrs; 8 in thick)
 - 10 (20 hrs; 10 in thick)
 - 12 (24 hours; 12 in thick)

First ZVI Applications - Permeable Reactive Barriers (PRBs)

- A permeable zone consisting of a reactive treatment area oriented to intercept and remediate a contaminant plume
- Removes contaminants from the ground water flow system by physical, chemical (ZVI), or biological processes

Conceptualization

ZVI PRB Systems

- Effective in removing many chlorinated hydrocarbons
- Persistent over long time periods
- Low operating and maintenance costs
- No adverse geochemical reactions

Ground Water Chemistry Changes

U. Of Waterloo Field Trial (1991)

First Commercial PRB Installation

Sunnyvale, CA (95)

envirometal technologies inc.

Source: Geomatrix

Full-Scale Installation – Elizabeth City, N.C.

TCE in Compliance Wells – Elizabeth City

Status – ZVI PRB systems

1999 - 22 full-scale systems

- 14 private facilities
- 3 U.S. DOD facilities
- 2 U.S. DOE facilities
- 3 other government facilities

Currently — 83 full-scale systems world wide

91 USA Field Installations

25 Installations Around the Globe

Emplacement Advances Summary

- ZVI can be placed to depths > 100 ft
- ZVI can be emplaced across selected depth intervals
- Recent advancements allow ZVI emplacement where trenching and excavation would be problematic

Vertical Hydraulic Fracturing

- Iron suspended in guar-based slurry
- Iron slurry injected at high pressure/low velocity
- Fractures propagate along vertical orientation
- Adjacent fractures coalesce to form continuous wall
- Slurry breaks down leaving permeable iron barrier

Overlapping Fractures

Panel Emplacement

High Pressure/High Velocity

High Pressure/High Velocity ZVI Injection

- Can be used to treat ground water hot spots
- Will result in contaminant mass reduction in ground water if effectively applied

Summary

- ZVI is an effective treatment media for contaminants such as those found in ground water at the Dunn Field site
- Contaminants are permanently destroyed
- During reaction over time, ZVI is gradually transformed (oxidized) back to its original form in nature (i.e. back to iron oxide)
- ZVI does not adversely impact ground water

Sources of Information

- www.rtdf.org
- www.eti.ca
- cgr.ese.ogi.edu/iron
- www.itrcweb.org
- www.epa.gov/tio
- www.prb-net.org
- www.rubin-online.de